Saturday, October 4, 2014

Global Foundries

http://www.globalfoundries.com/home

LPe

leverages GLOBALFOUNDRIES’ 65nm LPe (low-power enhanced) technology, which uses innovative leakage reduction techniques to significantly improve power utilization and extend battery life, making it especially well-suited for battery-operated and cost-sensitive mobile applications. The S2 Sensor Hub is expected to be production-certified in Q4 2014.

Maybe I expected a smaller trace width so that the areas of the S2 would be even less than it is, but consider this snip...


http://electronicdesign.com/digital-ics/understanding-28-nm-soc-design-arm-based-cores


n 28-nm designs, leakage power becomes more of an issue compared to previous nodes. This is due to thinner gate oxides, as well as more electron leakage between the drain and source of transistors. Especially in mobile applications, excessive leakage power has the potential to kill a project if not handled well.

So they have chosen something with yrs of experience, ie it works and if you go too far to the edge
other issues might crop up that would cause serious potential problems (?)...................

from the archives

In September 2009, it was announced that Chartered Semiconductor was about to be acquired by the main stockholder of GlobalFoundries






Chartered Begins Production Ramp of Enhanced 65nm Low-Power Process; Improves Power Utilization by 30-50 Percent

65nm LPe Process Reduces Leakage (Ioff) by 20x, Extending Battery Life in High-Volume Mobile Applications
SINGAPORE--()--Chartered Semiconductor Manufacturing (Nasdaq:CHRT) and (SGX:CHARTEREDSC), one of the world’s top dedicated foundries, today announced the general availability of an enhanced version of its 65-nanometer (nm) low-power (LP) process, called 65nm LPe. The 65nm LPe process utilizes innovative leakage-reduction techniques to significantly improve system-on-chip (SoC) standby power consumption by up to 50 percent. The result is a lower-power process especially suited for battery-operated and cost-sensitive mobile applications that require active standby conditions, such as mobile handsets, multimedia players or personal internet devices. The process is also supported by a robust range of IP specifically optimized for the lower leakage capabilities.
“We have worked closely with Chartered to optimize our SiWare™ Memory and SiWare™ Logic solutions to their 65nm LPe process to meet our mutual customers’ SoC requirements”
Chartered is also offering an optimized RF platform solution based on the 65nm LPe process that combines RF physical design kits, broad IP support and a collaborative development system with its partners from the Wireless SoC Platform Alliance (WISPA) consortium. (See additional press release from July 13, 2009: “Chartered Offers 65nm RF Platform To Enable Single-Chip Wireless Applications”).
The 65nm LPe process significantly improves the performance-to-leakage ratio (Ion/Ioff) within the process’ pMOSFET. Given the same Ion (uA/um), the Ioff current is reduced by a magnitude of 20X. This directly impacts the battery life of mobile applications as this leakage improvement is observable in both active and standby situations. In cases where a product operates in long standby situations such as a mobile phone, improvement in the standby power consumption can be as great as 15-25 percent, depending on the application.
A full suite of IP is available for the new process from leading suppliers, including Analog Bits, Aragio Solutions, ARM, Cosmic Circuits, Denali, Synopsys, True Circuits and Virage Logic. The support includes analog front end (AFE), audio codecs, standard interfaces and a range of level physical IP libraries and memory compilers that have been specifically tuned to take advantage of the enhanced leakage capabilities of the process.
“ARM is pleased to expand our long standing relationship with Chartered by offering a full complement of physical IP optimized for Chartered 65LPe process,” said Simon Segars, executive vice president and general manager PIPD division, ARM. “This rich platform of IP includes enhanced memories and logic targeted at improving the performance of ARM processors. All products are supported by the most advanced power management EDA views. We believe this combination of 65LPe process and ARM physical IP is well suited to a range of mainstream applications where leakage optimization is paramount. Through the sponsorship of Chartered, the libraries are free and available today athttp://designstart.arm.com.”
“We have worked closely with Chartered to optimize our SiWare™ Memory and SiWare™ Logic solutions to their 65nm LPe process to meet our mutual customers’ SoC requirements,” said Brani Buric, vice president of marketing and sales at Virage Logic. “With a comprehensive dashboard of options, the SiWare product line provides the flexibility needed to efficiently manage design tradeoffs to meet low power as well as performance design requirements.”
Chartered’s enhanced 65nm LPe process features a core 25 angstrom transistor oxide with three voltage options (Standard Vt, Low Vt, High Vt). The High Vt option offers the lowest leakage at 0.01nA/um and 0.007nA/um for the NMOS and PMOS transistors, respectively. Two thick gate oxides are available: a 32A device for 1.8V; and a flexible, IP-enabled 2.5V 52A device that is also useable for 1.8V and 3.3V applications by varying the channel length. The back end of line (BEOL) metal implementation supports up to nine layers of copper to optimize die size and routing efficiency. Manufactured on rotated substrates, the 65LPe process benefits from an increase in the pMOSFET hole mobility and saturation velocity without detrimentally affecting the nMOSFET.
“Today’s high-volume mobile applications require highly optimized silicon solutions that operate in an extremely power-efficient manner, but don’t compromise performance or functionality,” said Brian Klene, vice president, product marketing at Chartered. “Our 65nm LPe process has been developed specifically with extended battery life in mind, with optimizations made to the process itself and our ecosystem of design support to improve efficiency significantly. The 65nm LPe process is a full-featured and flexible platform on which a wide variety of wireless, mobile and multimedia products can be base




No comments:

Post a Comment